Short Encoding of Words
The problem is about encoding a list of words in a way that we can represent all of them in a single string, minimizing its length. We can notice that if one word is a suffix of another, it doesn’t need to be encoded separately. For example, in the word “time”, the word “me” is already present as a suffix, so we don’t need to represent “me” separately.
We can solve this problem by following these steps:
 Reverse the Words: Since we are interested in the suffixes of words, reversing them will help us find common suffixes.
 Remove Duplicates: Remove duplicates by adding reversed words to a set. This will help in encoding only the unique parts.
 Sort the Words: Sort the reversed words. This ensures that if one word is a suffix of another, they appear consecutively.
 Calculate Length: Iterate through the sorted words. If a word is not a prefix of the next word, then it’s not a suffix of any other word, and its length plus 1 (for the ‘#’ character) is added to the result.
Here’s the code:


The time complexity is (O(N \log N + W)), where (N) is the number of words, and (W) is the total number of characters in all the words. The space complexity is (O(W)) for storing the reversed and sorted words.
Identifying Problem Isomorphism
“Short Encoding of Words” can be mapped to “Longest Common Prefix”.
Here’s why:
In “Short Encoding of Words”, you are given a list of words, and the goal is to find the shortest possible combined length of all unique, nonsuffix words. A word is called a ‘suffix’ of another, if it can be found at the end of that other word.
In “Longest Common Prefix”, you are given a list of strings, and the task is to find the longest common prefix string amongst an array of strings.
The strategy in both problems involves analyzing substrings within a larger string or a set of strings. In “Short Encoding of Words”, you look for suffixes, whereas in “Longest Common Prefix”, you look for prefixes. Both problems deal with how different strings can be found within others.
The mapping is not exact. The “Short Encoding of Words” problem involves a more complex process of identifying unique nonsuffix words and their combined lengths, while the “Longest Common Prefix” problem is more straightforward.
Therefore, “Longest Common Prefix” is simpler due to its less complex requirements.
10 Prerequisite LeetCode Problems
For “820. Short Encoding of Words”, the following are a good preparation:
“14. Longest Common Prefix”  To understand how to efficiently find common prefixes, which will help in identifying overlapping words.
“28. Implement strStr()”  This problem requires understanding substrings, which is directly related to the main problem.
“242. Valid Anagram”  Provides practice in string manipulation and comparison.
“387. First Unique Character in a String”  Understanding how to deal with character counts can be helpful for this problem.
“344. Reverse String”  Provides practice with string manipulation, specifically reversing strings, which can be helpful for this problem.
“49. Group Anagrams”  Provides a good exercise in string manipulation and understanding how to group similar strings together.
“151. Reverse Words in a String”  This problem practices splitting and reversing strings, which is essential for finding overlapping words.
“459. Repeated Substring Pattern”  Understanding patterns in strings is a useful skill to have for this problem.
“76. Minimum Window Substring”  This problem requires an understanding of substrings, sliding window technique, which can be beneficial in solving the main problem.
“647. Palindromic Substrings”  Understanding how to find all substrings of a string and manipulate them can be useful for the main problem.
These cover string manipulation, substrings, and pattern recognition, which are fundamental to tackle the main problem.
Clarification Questions
What are the clarification questions we can ask about this problem?
Problem Analysis and Key Insights
What are the key insights from analyzing the problem statement?
Problem Boundary
What is the scope of this problem?
How to establish the boundary of this problem?
Problem Classification
Problem Statement:A valid encoding of an array of words is any reference string s and array of indices indices such that:
words.length == indices.length The reference string s ends with the ‘#’ character. For each index indices[i], the substring of s starting from indices[i] and up to (but not including) the next ‘#’ character is equal to words[i]. Given an array of words, return the length of the shortest reference string s possible of any valid encoding of words.
Example 1:
Input: words = [“time”, “me”, “bell”] Output: 10 Explanation: A valid encoding would be s = “time#bell#” and indices = [0, 2, 5]. words[0] = “time”, the substring of s starting from indices[0] = 0 to the next ‘#’ is underlined in “time#bell#” words[1] = “me”, the substring of s starting from indices[1] = 2 to the next ‘#’ is underlined in “time#bell#” words[2] = “bell”, the substring of s starting from indices[2] = 5 to the next ‘#’ is underlined in “time#bell#” Example 2:
Input: words = [“t”] Output: 2 Explanation: A valid encoding would be s = “t#” and indices = [0].
Constraints:
1 <= words.length <= 2000 1 <= words[i].length <= 7 words[i] consists of only lowercase letters.
Analyze the provided problem statement. Categorize it based on its domain, ignoring ‘How’ it might be solved. Identify and list out the ‘What’ components. Based on these, further classify the problem. Explain your categorizations.
Distilling the Problem to Its Core Elements
Can you identify the fundamental concept or principle this problem is based upon? Please explain. What is the simplest way you would describe this problem to someone unfamiliar with the subject? What is the core problem we are trying to solve? Can we simplify the problem statement? Can you break down the problem into its key components? What is the minimal set of operations we need to perform to solve this problem?
Visual Model of the Problem
How to visualize the problem statement for this problem?
Problem Restatement
Could you start by paraphrasing the problem statement in your own words? Try to distill the problem into its essential elements and make sure to clarify the requirements and constraints. This exercise should aid in understanding the problem better and aligning our thought process before jumping into solving it.
Abstract Representation of the Problem
Could you help me formulate an abstract representation of this problem?
Given this problem, how can we describe it in an abstract way that emphasizes the structure and key elements, without the specific realworld details?
Terminology
Are there any specialized terms, jargon, or technical concepts that are crucial to understanding this problem or solution? Could you define them and explain their role within the context of this problem?
Problem Simplification and Explanation
Could you please break down this problem into simpler terms? What are the key concepts involved and how do they interact? Can you also provide a metaphor or analogy to help me understand the problem better?
Constraints
Given the problem statement and the constraints provided, identify specific characteristics or conditions that can be exploited to our advantage in finding an efficient solution. Look for patterns or specific numerical ranges that could be useful in manipulating or interpreting the data.
What are the key insights from analyzing the constraints?
Case Analysis
Could you please provide additional examples or test cases that cover a wider range of the input space, including edge and boundary conditions? In doing so, could you also analyze each example to highlight different aspects of the problem, key constraints and potential pitfalls, as well as the reasoning behind the expected output for each case? This should help in generating key insights about the problem and ensuring the solution is robust and handles all possible scenarios.
Provide names by categorizing these cases
What are the edge cases?
How to visualize these cases?
What are the key insights from analyzing the different cases?
Identification of Applicable Theoretical Concepts
Can you identify any mathematical or algorithmic concepts or properties that can be applied to simplify the problem or make it more manageable? Think about the nature of the operations or manipulations required by the problem statement. Are there existing theories, metrics, or methodologies in mathematics, computer science, or related fields that can be applied to calculate, measure, or perform these operations more effectively or efficiently?
Simple Explanation
Can you explain this problem in simple terms or like you would explain to a nontechnical person? Imagine you’re explaining this problem to someone without a background in programming. How would you describe it? If you had to explain this problem to a child or someone who doesn’t know anything about coding, how would you do it? In layman’s terms, how would you explain the concept of this problem? Could you provide a metaphor or everyday example to explain the idea of this problem?
Problem Breakdown and Solution Methodology
Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.
Inference of ProblemSolving Approach from the Problem Statement
Can you identify the key terms or concepts in this problem and explain how they inform your approach to solving it? Please list each keyword and how it guides you towards using a specific strategy or method. How can I recognize these properties by drawing tables or diagrams?
How did you infer from the problem statement that this problem can be solved using ?
Simple Explanation of the Proof
I’m having trouble understanding the proof of this algorithm. Could you explain it in a way that’s easy to understand?
Stepwise Refinement
Could you please provide a stepwise refinement of our approach to solving this problem?
How can we take the highlevel solution approach and distill it into more granular, actionable steps?
Could you identify any parts of the problem that can be solved independently?
Are there any repeatable patterns within our solution?
Solution Approach and Analysis
Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.
Identify Invariant
What is the invariant in this problem?
Identify Loop Invariant
What is the loop invariant in this problem?
Is invariant and loop invariant the same for this problem?
Thought Process
Can you explain the basic thought process and steps involved in solving this type of problem?
Explain the thought process by thinking step by step to solve this problem from the problem statement and code the final solution. Write code in Python3. What are the cues in the problem statement? What direction does it suggest in the approach to the problem? Generate insights about the problem statement.
Establishing Preconditions and Postconditions
Parameters:
 What are the inputs to the method?
 What types are these parameters?
 What do these parameters represent in the context of the problem?
Preconditions:
 Before this method is called, what must be true about the state of the program or the values of the parameters?
 Are there any constraints on the input parameters?
 Is there a specific state that the program or some part of it must be in?
Method Functionality:
 What is this method expected to do?
 How does it interact with the inputs and the current state of the program?
Postconditions:
 After the method has been called and has returned, what is now true about the state of the program or the values of the parameters?
 What does the return value represent or indicate?
 What side effects, if any, does the method have?
Error Handling:
 How does the method respond if the preconditions are not met?
 Does it throw an exception, return a special value, or do something else?
Problem Decomposition
Problem Understanding:
 Can you explain the problem in your own words? What are the key components and requirements?
Initial Breakdown:
 Start by identifying the major parts or stages of the problem. How can you break the problem into several broad subproblems?
Subproblem Refinement:
 For each subproblem identified, ask yourself if it can be further broken down. What are the smaller tasks that need to be done to solve each subproblem?
Task Identification:
 Within these smaller tasks, are there any that are repeated or very similar? Could these be generalized into a single, reusable task?
Task Abstraction:
 For each task you’ve identified, is it abstracted enough to be clear and reusable, but still makes sense in the context of the problem?
Method Naming:
 Can you give each task a simple, descriptive name that makes its purpose clear?
Subproblem Interactions:
 How do these subproblems or tasks interact with each other? In what order do they need to be performed? Are there any dependencies?
From Brute Force to Optimal Solution
Could you please begin by illustrating a brute force solution for this problem? After detailing and discussing the inefficiencies of the brute force approach, could you then guide us through the process of optimizing this solution? Please explain each step towards optimization, discussing the reasoning behind each decision made, and how it improves upon the previous solution. Also, could you show how these optimizations impact the time and space complexity of our solution?
Code Explanation and Design Decisions
Identify the initial parameters and explain their significance in the context of the problem statement or the solution domain.
Discuss the primary loop or iteration over the input data. What does each iteration represent in terms of the problem you’re trying to solve? How does the iteration advance or contribute to the solution?
If there are conditions or branches within the loop, what do these conditions signify? Explain the logical reasoning behind the branching in the context of the problem’s constraints or requirements.
If there are updates or modifications to parameters within the loop, clarify why these changes are necessary. How do these modifications reflect changes in the state of the solution or the constraints of the problem?
Describe any invariant that’s maintained throughout the code, and explain how it helps meet the problem’s constraints or objectives.
Discuss the significance of the final output in relation to the problem statement or solution domain. What does it represent and how does it satisfy the problem’s requirements?
Remember, the focus here is not to explain what the code does on a syntactic level, but to communicate the intent and rationale behind the code in the context of the problem being solved.
Coding Constructs
Consider the code for the solution of this problem.
What are the highlevel problemsolving strategies or techniques being used by this code?
If you had to explain the purpose of this code to a nonprogrammer, what would you say?
Can you identify the logical elements or constructs used in this code, independent of any programming language?
Could you describe the algorithmic approach used by this code in plain English?
What are the key steps or operations this code is performing on the input data, and why?
Can you identify the algorithmic patterns or strategies used by this code, irrespective of the specific programming language syntax?
Language Agnostic Coding Drills
Your mission is to deconstruct this code into the smallest possible learning units, each corresponding to a separate coding concept. Consider these concepts as unique coding drills that can be individually implemented and later assembled into the final solution.
Dissect the code and identify each distinct concept it contains. Remember, this process should be languageagnostic and generally applicable to most modern programming languages.
Once you’ve identified these coding concepts or drills, list them out in order of increasing difficulty. Provide a brief description of each concept and why it is classified at its particular difficulty level.
Next, describe the problemsolving approach that would lead from the problem statement to the final solution. Think about how each of these coding drills contributes to the overall solution. Elucidate the stepbystep process involved in using these drills to solve the problem. Please refrain from writing any actual code; we’re focusing on understanding the process and strategy.
Targeted Drills in Python
Now that you’ve identified and ordered the coding concepts from a complex software code in the previous exercise, let’s focus on creating Pythonbased coding drills for each of those concepts.
Begin by writing a separate piece of Python code that encapsulates each identified concept. These individual drills should illustrate how to implement each concept in Python. Please ensure that these are suitable even for those with a basic understanding of Python.
In addition to the general concepts, identify and write coding drills for any problemspecific concepts that might be needed to create a solution. Describe why these drills are essential for our problem.
Once all drills have been coded, describe how these pieces can be integrated together in the right order to solve the initial problem. Each drill should contribute to building up to the final solution.
Remember, the goal is to not only to write these drills but also to ensure that they can be cohesively assembled into one comprehensive solution.
Q&A
Similar Problems
Can you suggest 10 problems from LeetCode that require similar problemsolving strategies or use similar underlying concepts as the problem we’ve just solved? These problems can be from any domain or topic, but they should involve similar steps or techniques in the solution process. Also, please briefly explain why you consider each of these problems to be related to our original problem. The response text is of the following format:
Here are 10 problems that use similar underlying concepts: