Find the City With the Smallest Number of Neighbors at a Threshold Distance

This problem can be solved using the Floyd-Warshall algorithm, which calculates the shortest path between all pairs of nodes in a graph. The main idea is to identify for each city the number of other cities it can reach within the distanceThreshold.

Here’s the step-by-step solution

  1. Initialize a Distance Matrix: Start with a 2D matrix of size n x n initialized with a large number (e.g., float('inf')). The value in cell (i, j) will be the minimum distance between cities i and j.

  2. Set Diagonal to Zero: The distance from a city to itself is zero, so set all diagonal entries of the matrix to 0.

  3. Update Matrix with Edges: For each edge given in the input, update the corresponding cells in the matrix with the weight of the edge.

  4. Floyd-Warshall Algorithm: For each city k, try to use it as an intermediate step between all pairs of cities (i, j). If going through city k provides a shorter path between i and j, then update the matrix entry for (i, j).

  5. Count Reachable Cities: For each city i, count how many cities j it can reach such that the distance is at most distanceThreshold.

  6. Return the Answer: Finally, identify the city with the smallest count. If there’s a tie, return the city with the greatest number.

Here’s the Python code:

class Solution:
    def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:
        # Step 1: Initialize distance matrix
        dist = [[float('inf')] * n for _ in range(n)]

        # Step 2: Set diagonal to zero
        for i in range(n):
            dist[i][i] = 0

        # Step 3: Update matrix with edges
        for u, v, w in edges:
            dist[u][v] = w
            dist[v][u] = w

        # Step 4: Floyd-Warshall algorithm
        for k in range(n):
            for i in range(n):
                for j in range(n):
                    dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])

        # Step 5: Count reachable cities
        ans = (-1, float('inf'))  # (city, count of reachable cities)
        for i in range(n):
            count = sum(1 for j in range(n) if dist[i][j] <= distanceThreshold)
            if count <= ans[1]:
                ans = (i, count)

        # Step 6: Return the answer
        return ans[0]

Key Takeaways

  • The Floyd-Warshall algorithm is a powerful method to find the shortest paths between all pairs of nodes in a graph.
  • By precomputing the shortest paths, we can quickly answer various queries about the graph, like the number of reachable cities within a certain distance.

Identifying Problem Isomorphism

“Find the City With the Smallest Number of Neighbors at a Threshold Distance” can be mapped to “Network Delay Time”.

“Network Delay Time” is simpler and provides a basis for understanding how to traverse weighted edges in a graph and calculate distances. It is a single-source shortest path problem that deals with finding the time it takes for a signal to reach all nodes in a network. This is similar to the original problem’s concept of finding cities that are reachable through some path and whose distance is at most distanceThreshold.

For a higher complexity, the problem can also be mapped to “Cheapest Flights Within K Stops”. This problem introduces a new constraint (K stops), which adds a level of difficulty. It maintains the concept of finding paths within a certain limit (K stops vs. distanceThreshold), but now we need to find the cheapest cost (shortest weighted path), which involves more complex calculations and can require different algorithmic approaches.

10 Prerequisite LeetCode Problems

These are selected as they all involve dealing with weighted graphs and finding paths under specific constraints, which is the core concept of the initial problem. By solving these, you could enhance understanding around graph traversal and shortest path problems.

For this, the following are a good preparation:

  1. “743. Network Delay Time” - This problem involves handling weighted edges between nodes in a network. It is a good practice for understanding the time/distance dynamics in a graph.

  2. “787. Cheapest Flights Within K Stops” - This problem helps understand graph traversal with a limit on the number of edges. It’s an excellent way to handle thresholds in graph problems.

  3. “207. Course Schedule” - This problem helps to understand topological sorting and the concept of prerequisites, which can be seen as a threshold for accessing a certain node.

  4. “332. Reconstruct Itinerary” - This problem teaches how to reconstruct paths in a graph, which can be useful for understanding connections between cities.

  5. " Floyd Warshall algorithm (not a LeetCode problem but a popular algorithm)" - This algorithm helps to understand how to calculate shortest paths in weighted graphs, a concept that is key to this problem.

  6. “Bellman-Ford algorithm (not a LeetCode problem but a popular algorithm)” - This is another algorithm for calculating shortest paths in weighted graphs.

  7. “210. Course Schedule II” - This is an extension to the Course Schedule problem and involves ordering of graph traversal which can be useful for understanding this problem.

  8. “684. Redundant Connection” - This problem involves identifying and eliminating redundant connections in a graph, which can be an essential technique when trying to minimize the number of neighbors.

  9. “127. Word Ladder” - This problem is about finding the shortest transformation sequence from one word to another word given a set of intermediate words. The concept of finding shortest paths is useful here as well.

  10. “399. Evaluate Division” - This problem involves graph and path calculations using division equations, which will help in understanding the concept of weighted edges in the context of this problem.

These cover how to handle graphs, weighted edges, shortest paths, and thresholds, which are key themes in the main problem.

Problem Classification

Problem Statement:There are n cities numbered from 0 to n-1. Given the array edges where edges[i] = [fromi, toi, weighti] represents a bidirectional and weighted edge between cities fromi and toi, and given the integer distanceThreshold.

Return the city with the smallest number of cities that are reachable through some path and whose distance is at most distanceThreshold, If there are multiple such cities, return the city with the greatest number.

Notice that the distance of a path connecting cities i and j is equal to the sum of the edges’ weights along that path.

Example 1:

Input: n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4 Output: 3 Explanation: The figure above describes the graph. The neighboring cities at a distanceThreshold = 4 for each city are: City 0 -> [City 1, City 2] City 1 -> [City 0, City 2, City 3] City 2 -> [City 0, City 1, City 3] City 3 -> [City 1, City 2] Cities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.

Example 2:

Input: n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2 Output: 0 Explanation: The figure above describes the graph. The neighboring cities at a distanceThreshold = 2 for each city are: City 0 -> [City 1] City 1 -> [City 0, City 4] City 2 -> [City 3, City 4] City 3 -> [City 2, City 4] City 4 -> [City 1, City 2, City 3] The city 0 has 1 neighboring city at a distanceThreshold = 2.


2 <= n <= 100 1 <= edges.length <= n * (n - 1) / 2 edges[i].length == 3 0 <= fromi < toi < n 1 <= weighti, distanceThreshold <= 10^4 All pairs (fromi, toi) are distinct.

Analyze the provided problem statement. Categorize it based on its domain, ignoring ‘How’ it might be solved. Identify and list out the ‘What’ components. Based on these, further classify the problem. Explain your categorizations.

Clarification Questions

What are the clarification questions we can ask about this problem?

Problem Analysis and Key Insights

What are the key insights from analyzing the problem statement?

Problem Boundary

What is the scope of this problem?

How to establish the boundary of this problem?

Distilling the Problem to Its Core Elements

Can you identify the fundamental concept or principle this problem is based upon? Please explain. What is the simplest way you would describe this problem to someone unfamiliar with the subject? What is the core problem we are trying to solve? Can we simplify the problem statement? Can you break down the problem into its key components? What is the minimal set of operations we need to perform to solve this problem?

Visual Model of the Problem

How to visualize the problem statement for this problem?

Problem Restatement

Could you start by paraphrasing the problem statement in your own words? Try to distill the problem into its essential elements and make sure to clarify the requirements and constraints. This exercise should aid in understanding the problem better and aligning our thought process before jumping into solving it.

Abstract Representation of the Problem

Could you help me formulate an abstract representation of this problem?

Given this problem, how can we describe it in an abstract way that emphasizes the structure and key elements, without the specific real-world details?


Are there any specialized terms, jargon, or technical concepts that are crucial to understanding this problem or solution? Could you define them and explain their role within the context of this problem?

Problem Simplification and Explanation

Could you please break down this problem into simpler terms? What are the key concepts involved and how do they interact? Can you also provide a metaphor or analogy to help me understand the problem better?


Given the problem statement and the constraints provided, identify specific characteristics or conditions that can be exploited to our advantage in finding an efficient solution. Look for patterns or specific numerical ranges that could be useful in manipulating or interpreting the data.

What are the key insights from analyzing the constraints?

Case Analysis

Could you please provide additional examples or test cases that cover a wider range of the input space, including edge and boundary conditions? In doing so, could you also analyze each example to highlight different aspects of the problem, key constraints and potential pitfalls, as well as the reasoning behind the expected output for each case? This should help in generating key insights about the problem and ensuring the solution is robust and handles all possible scenarios.

Provide names by categorizing these cases

What are the edge cases?

How to visualize these cases?

What are the key insights from analyzing the different cases?

Identification of Applicable Theoretical Concepts

Can you identify any mathematical or algorithmic concepts or properties that can be applied to simplify the problem or make it more manageable? Think about the nature of the operations or manipulations required by the problem statement. Are there existing theories, metrics, or methodologies in mathematics, computer science, or related fields that can be applied to calculate, measure, or perform these operations more effectively or efficiently?

Simple Explanation

Can you explain this problem in simple terms or like you would explain to a non-technical person? Imagine you’re explaining this problem to someone without a background in programming. How would you describe it? If you had to explain this problem to a child or someone who doesn’t know anything about coding, how would you do it? In layman’s terms, how would you explain the concept of this problem? Could you provide a metaphor or everyday example to explain the idea of this problem?

Problem Breakdown and Solution Methodology

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Inference of Problem-Solving Approach from the Problem Statement

Can you identify the key terms or concepts in this problem and explain how they inform your approach to solving it? Please list each keyword and how it guides you towards using a specific strategy or method. How can I recognize these properties by drawing tables or diagrams?

How did you infer from the problem statement that this problem can be solved using ?

Simple Explanation of the Proof

I’m having trouble understanding the proof of this algorithm. Could you explain it in a way that’s easy to understand?

Stepwise Refinement

  1. Could you please provide a stepwise refinement of our approach to solving this problem?

  2. How can we take the high-level solution approach and distill it into more granular, actionable steps?

  3. Could you identify any parts of the problem that can be solved independently?

  4. Are there any repeatable patterns within our solution?

Solution Approach and Analysis

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Identify Invariant

What is the invariant in this problem?

Identify Loop Invariant

What is the loop invariant in this problem?

Is invariant and loop invariant the same for this problem?

Thought Process

Can you explain the basic thought process and steps involved in solving this type of problem?

Explain the thought process by thinking step by step to solve this problem from the problem statement and code the final solution. Write code in Python3. What are the cues in the problem statement? What direction does it suggest in the approach to the problem? Generate insights about the problem statement.

Establishing Preconditions and Postconditions

  1. Parameters:

    • What are the inputs to the method?
    • What types are these parameters?
    • What do these parameters represent in the context of the problem?
  2. Preconditions:

    • Before this method is called, what must be true about the state of the program or the values of the parameters?
    • Are there any constraints on the input parameters?
    • Is there a specific state that the program or some part of it must be in?
  3. Method Functionality:

    • What is this method expected to do?
    • How does it interact with the inputs and the current state of the program?
  4. Postconditions:

    • After the method has been called and has returned, what is now true about the state of the program or the values of the parameters?
    • What does the return value represent or indicate?
    • What side effects, if any, does the method have?
  5. Error Handling:

    • How does the method respond if the preconditions are not met?
    • Does it throw an exception, return a special value, or do something else?

Problem Decomposition

  1. Problem Understanding:

    • Can you explain the problem in your own words? What are the key components and requirements?
  2. Initial Breakdown:

    • Start by identifying the major parts or stages of the problem. How can you break the problem into several broad subproblems?
  3. Subproblem Refinement:

    • For each subproblem identified, ask yourself if it can be further broken down. What are the smaller tasks that need to be done to solve each subproblem?
  4. Task Identification:

    • Within these smaller tasks, are there any that are repeated or very similar? Could these be generalized into a single, reusable task?
  5. Task Abstraction:

    • For each task you’ve identified, is it abstracted enough to be clear and reusable, but still makes sense in the context of the problem?
  6. Method Naming:

    • Can you give each task a simple, descriptive name that makes its purpose clear?
  7. Subproblem Interactions:

    • How do these subproblems or tasks interact with each other? In what order do they need to be performed? Are there any dependencies?

From Brute Force to Optimal Solution

Could you please begin by illustrating a brute force solution for this problem? After detailing and discussing the inefficiencies of the brute force approach, could you then guide us through the process of optimizing this solution? Please explain each step towards optimization, discussing the reasoning behind each decision made, and how it improves upon the previous solution. Also, could you show how these optimizations impact the time and space complexity of our solution?

Code Explanation and Design Decisions

  1. Identify the initial parameters and explain their significance in the context of the problem statement or the solution domain.

  2. Discuss the primary loop or iteration over the input data. What does each iteration represent in terms of the problem you’re trying to solve? How does the iteration advance or contribute to the solution?

  3. If there are conditions or branches within the loop, what do these conditions signify? Explain the logical reasoning behind the branching in the context of the problem’s constraints or requirements.

  4. If there are updates or modifications to parameters within the loop, clarify why these changes are necessary. How do these modifications reflect changes in the state of the solution or the constraints of the problem?

  5. Describe any invariant that’s maintained throughout the code, and explain how it helps meet the problem’s constraints or objectives.

  6. Discuss the significance of the final output in relation to the problem statement or solution domain. What does it represent and how does it satisfy the problem’s requirements?

Remember, the focus here is not to explain what the code does on a syntactic level, but to communicate the intent and rationale behind the code in the context of the problem being solved.

Coding Constructs

Consider the code for the solution of this problem.

  1. What are the high-level problem-solving strategies or techniques being used by this code?

  2. If you had to explain the purpose of this code to a non-programmer, what would you say?

  3. Can you identify the logical elements or constructs used in this code, independent of any programming language?

  4. Could you describe the algorithmic approach used by this code in plain English?

  5. What are the key steps or operations this code is performing on the input data, and why?

  6. Can you identify the algorithmic patterns or strategies used by this code, irrespective of the specific programming language syntax?

Language Agnostic Coding Drills

Your mission is to deconstruct this code into the smallest possible learning units, each corresponding to a separate coding concept. Consider these concepts as unique coding drills that can be individually implemented and later assembled into the final solution.

  1. Dissect the code and identify each distinct concept it contains. Remember, this process should be language-agnostic and generally applicable to most modern programming languages.

  2. Once you’ve identified these coding concepts or drills, list them out in order of increasing difficulty. Provide a brief description of each concept and why it is classified at its particular difficulty level.

  3. Next, describe the problem-solving approach that would lead from the problem statement to the final solution. Think about how each of these coding drills contributes to the overall solution. Elucidate the step-by-step process involved in using these drills to solve the problem. Please refrain from writing any actual code; we’re focusing on understanding the process and strategy.

Targeted Drills in Python

Now that you’ve identified and ordered the coding concepts from a complex software code in the previous exercise, let’s focus on creating Python-based coding drills for each of those concepts.

  1. Begin by writing a separate piece of Python code that encapsulates each identified concept. These individual drills should illustrate how to implement each concept in Python. Please ensure that these are suitable even for those with a basic understanding of Python.

  2. In addition to the general concepts, identify and write coding drills for any problem-specific concepts that might be needed to create a solution. Describe why these drills are essential for our problem.

  3. Once all drills have been coded, describe how these pieces can be integrated together in the right order to solve the initial problem. Each drill should contribute to building up to the final solution.

Remember, the goal is to not only to write these drills but also to ensure that they can be cohesively assembled into one comprehensive solution.


Similar Problems

Can you suggest 10 problems from LeetCode that require similar problem-solving strategies or use similar underlying concepts as the problem we’ve just solved? These problems can be from any domain or topic, but they should involve similar steps or techniques in the solution process. Also, please briefly explain why you consider each of these problems to be related to our original problem. The response text is of the following format:

Here are 10 problems that use similar underlying concepts: