Filling Bookcase Shelves

This problem can be approached using dynamic programming. The idea is to iterate through the books and at each step decide whether to place the current book on a new shelf or add it to the current shelf.

  1. Initialization: Create a dp array of size n+1 and initialize it with a large value, except for dp[0], which should be initialized to 0.

  2. Iterate through the books: For each book, calculate the possible height if it is added to the current shelf or placed on a new shelf. Keep track of the current shelf width and height, and update the dp array accordingly.

  3. Calculate Minimum Height: The minimum height for placing the books up to index i can be calculated by considering all previous books and adding them to the current shelf if possible. If not, the current book will start a new shelf.

class Solution:
    def minHeightShelves(self, books: List[List[int]], shelfWidth: int) -> int:
        n = len(books)
        dp = [float('inf')] * (n + 1)
        dp[0] = 0

        for i in range(1, n + 1):
            width, height = 0, 0
            # Consider all previous books to decide whether to add to current shelf or start new
            for j in range(i, 0, -1):
                width += books[j - 1][0]
                if width > shelfWidth: 
                height = max(height, books[j - 1][1])
                dp[i] = min(dp[i], dp[j - 1] + height)

        return dp[n]

This code calculates the minimum possible height of the bookshelf by placing the books according to the given constraints. It ensures that the sum of the thickness of the books on any shelf is less than or equal to shelfWidth, and minimizes the total height of the bookshelf.

Identifying Problem Isomorphism

“Filling Bookcase Shelves” can be mapped to “Best Time to Buy and Sell Stock with Cooldown”.

In “Filling Bookcase Shelves”, you are given a series of books with widths and heights and need to arrange them on a shelf in a way that minimizes the total height of the bookshelf. The arrangement of books is subject to certain constraints related to the shelf width.

“Best Time to Buy and Sell Stock with Cooldown” asks you to determine the maximum profit you can achieve by buying and selling stocks on various days, with the constraint that after selling a stock, you must wait for a cooldown period before you can engage in another transaction.

In both cases, you are trying to find an optimal arrangement or sequence of actions that satisfy certain constraints and either minimize a cost (“Filling Bookcase Shelves”) or maximize a profit (“Best Time to Buy and Sell Stock with Cooldown”).

The mapping is an approximate one. In “Filling Bookcase Shelves”, the “cost” is a spatial one (the height of the bookshelf), whereas in “Best Time to Buy and Sell Stock with Cooldown”, the “cost” is monetary (the profit from stock transactions). Moreover, the constraints in the two problems are different in nature: spatial constraints in the former and time-related constraints in the latter.

“Best Time to Buy and Sell Stock with Cooldown” is simpler, because it involves only one-dimensional decision-making (whether to buy, sell, or do nothing), whereas “Filling Bookcase Shelves” involves two-dimensional decision-making (how to place each book, considering both its width and height).

10 Prerequisite LeetCode Problems

“1105. Filling Bookcase Shelves” is a dynamic programming problem that involves array manipulation. Here are some simpler problems to develop the skills needed for this problem:

  1. LeetCode 70: Climbing Stairs: This is a basic dynamic programming problem which can help you understand the basic concept of dynamic programming.

  2. LeetCode 53: Maximum Subarray: This problem is a simpler version that involves finding a subarray with maximum sum. It helps to understand how to handle arrays in DP problems.

  3. LeetCode 322: Coin Change: This problem is a classic dynamic programming problem about finding the minimum number of coins to make a certain amount.

  4. LeetCode 300: Longest Increasing Subsequence: This problem involves finding a subsequence in an unsorted array, which is a common pattern in DP problems.

  5. LeetCode 198: House Robber: This problem involves dynamic programming with a twist of choosing and skipping elements, which is a common pattern in DP problems.

  6. LeetCode 1043: Partition Array for Maximum Sum: Similar to the target problem, this problem also involves splitting an array into parts under certain conditions and maximizing the sum.

  7. LeetCode 416: Partition Equal Subset Sum: This problem also requires you to partition the elements into two sets to achieve a certain condition, which is a common pattern with this type of problem.

  8. LeetCode 64: Minimum Path Sum: This problem is about finding the minimum path sum in a grid, which requires understanding of dynamic programming in a 2D space.

  9. LeetCode 518: Coin Change 2: This problem also requires dynamic programming and array manipulation to find the number of combinations that make up a certain amount.

  10. LeetCode 139: Word Break: This problem involves dynamic programming with a string and a dictionary, it can help you understand how to break a problem into subproblems.

These cover dynamic programming and how to apply it in various situations.

Clarification Questions

What are the clarification questions we can ask about this problem?

Problem Analysis and Key Insights

What are the key insights from analyzing the problem statement?

Problem Boundary

What is the scope of this problem?

How to establish the boundary of this problem?

Problem Classification

Problem Statement:You are given an array books where books[i] = [thicknessi, heighti] indicates the thickness and height of the ith book. You are also given an integer shelfWidth.

We want to place these books in order onto bookcase shelves that have a total width shelfWidth.

We choose some of the books to place on this shelf such that the sum of their thickness is less than or equal to shelfWidth, then build another level of the shelf of the bookcase so that the total height of the bookcase has increased by the maximum height of the books we just put down. We repeat this process until there are no more books to place.

Note that at each step of the above process, the order of the books we place is the same order as the given sequence of books.

For example, if we have an ordered list of 5 books, we might place the first and second book onto the first shelf, the third book on the second shelf, and the fourth and fifth book on the last shelf. Return the minimum possible height that the total bookshelf can be after placing shelves in this manner.

Example 1:

Input: books = [[1,1],[2,3],[2,3],[1,1],[1,1],[1,1],[1,2]], shelfWidth = 4 Output: 6 Explanation: The sum of the heights of the 3 shelves is 1 + 3 + 2 = 6. Notice that book number 2 does not have to be on the first shelf.

Example 2:

Input: books = [[1,3],[2,4],[3,2]], shelfWidth = 6 Output: 4


1 <= books.length <= 1000 1 <= thicknessi <= shelfWidth <= 1000 1 <= heighti <= 1000

Analyze the provided problem statement. Categorize it based on its domain, ignoring ‘How’ it might be solved. Identify and list out the ‘What’ components. Based on these, further classify the problem. Explain your categorizations.

Distilling the Problem to Its Core Elements

Can you identify the fundamental concept or principle this problem is based upon? Please explain. What is the simplest way you would describe this problem to someone unfamiliar with the subject? What is the core problem we are trying to solve? Can we simplify the problem statement? Can you break down the problem into its key components? What is the minimal set of operations we need to perform to solve this problem?

Visual Model of the Problem

How to visualize the problem statement for this problem?

Problem Restatement

Could you start by paraphrasing the problem statement in your own words? Try to distill the problem into its essential elements and make sure to clarify the requirements and constraints. This exercise should aid in understanding the problem better and aligning our thought process before jumping into solving it.

Abstract Representation of the Problem

Could you help me formulate an abstract representation of this problem?

Given this problem, how can we describe it in an abstract way that emphasizes the structure and key elements, without the specific real-world details?


Are there any specialized terms, jargon, or technical concepts that are crucial to understanding this problem or solution? Could you define them and explain their role within the context of this problem?

Problem Simplification and Explanation

Could you please break down this problem into simpler terms? What are the key concepts involved and how do they interact? Can you also provide a metaphor or analogy to help me understand the problem better?


Given the problem statement and the constraints provided, identify specific characteristics or conditions that can be exploited to our advantage in finding an efficient solution. Look for patterns or specific numerical ranges that could be useful in manipulating or interpreting the data.

What are the key insights from analyzing the constraints?

Case Analysis

Could you please provide additional examples or test cases that cover a wider range of the input space, including edge and boundary conditions? In doing so, could you also analyze each example to highlight different aspects of the problem, key constraints and potential pitfalls, as well as the reasoning behind the expected output for each case? This should help in generating key insights about the problem and ensuring the solution is robust and handles all possible scenarios.

Provide names by categorizing these cases

What are the edge cases?

How to visualize these cases?

What are the key insights from analyzing the different cases?

Identification of Applicable Theoretical Concepts

Can you identify any mathematical or algorithmic concepts or properties that can be applied to simplify the problem or make it more manageable? Think about the nature of the operations or manipulations required by the problem statement. Are there existing theories, metrics, or methodologies in mathematics, computer science, or related fields that can be applied to calculate, measure, or perform these operations more effectively or efficiently?

Simple Explanation

Can you explain this problem in simple terms or like you would explain to a non-technical person? Imagine you’re explaining this problem to someone without a background in programming. How would you describe it? If you had to explain this problem to a child or someone who doesn’t know anything about coding, how would you do it? In layman’s terms, how would you explain the concept of this problem? Could you provide a metaphor or everyday example to explain the idea of this problem?

Problem Breakdown and Solution Methodology

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Inference of Problem-Solving Approach from the Problem Statement

Can you identify the key terms or concepts in this problem and explain how they inform your approach to solving it? Please list each keyword and how it guides you towards using a specific strategy or method. How can I recognize these properties by drawing tables or diagrams?

How did you infer from the problem statement that this problem can be solved using ?

Simple Explanation of the Proof

I’m having trouble understanding the proof of this algorithm. Could you explain it in a way that’s easy to understand?

Stepwise Refinement

  1. Could you please provide a stepwise refinement of our approach to solving this problem?

  2. How can we take the high-level solution approach and distill it into more granular, actionable steps?

  3. Could you identify any parts of the problem that can be solved independently?

  4. Are there any repeatable patterns within our solution?

Solution Approach and Analysis

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Identify Invariant

What is the invariant in this problem?

Identify Loop Invariant

What is the loop invariant in this problem?

Thought Process

Can you explain the basic thought process and steps involved in solving this type of problem?

Explain the thought process by thinking step by step to solve this problem from the problem statement and code the final solution. Write code in Python3. What are the cues in the problem statement? What direction does it suggest in the approach to the problem? Generate insights about the problem statement.

Establishing Preconditions and Postconditions

  1. Parameters:

    • What are the inputs to the method?
    • What types are these parameters?
    • What do these parameters represent in the context of the problem?
  2. Preconditions:

    • Before this method is called, what must be true about the state of the program or the values of the parameters?
    • Are there any constraints on the input parameters?
    • Is there a specific state that the program or some part of it must be in?
  3. Method Functionality:

    • What is this method expected to do?
    • How does it interact with the inputs and the current state of the program?
  4. Postconditions:

    • After the method has been called and has returned, what is now true about the state of the program or the values of the parameters?
    • What does the return value represent or indicate?
    • What side effects, if any, does the method have?
  5. Error Handling:

    • How does the method respond if the preconditions are not met?
    • Does it throw an exception, return a special value, or do something else?

Problem Decomposition

  1. Problem Understanding:

    • Can you explain the problem in your own words? What are the key components and requirements?
  2. Initial Breakdown:

    • Start by identifying the major parts or stages of the problem. How can you break the problem into several broad subproblems?
  3. Subproblem Refinement:

    • For each subproblem identified, ask yourself if it can be further broken down. What are the smaller tasks that need to be done to solve each subproblem?
  4. Task Identification:

    • Within these smaller tasks, are there any that are repeated or very similar? Could these be generalized into a single, reusable task?
  5. Task Abstraction:

    • For each task you’ve identified, is it abstracted enough to be clear and reusable, but still makes sense in the context of the problem?
  6. Method Naming:

    • Can you give each task a simple, descriptive name that makes its purpose clear?
  7. Subproblem Interactions:

    • How do these subproblems or tasks interact with each other? In what order do they need to be performed? Are there any dependencies?

From Brute Force to Optimal Solution

Could you please begin by illustrating a brute force solution for this problem? After detailing and discussing the inefficiencies of the brute force approach, could you then guide us through the process of optimizing this solution? Please explain each step towards optimization, discussing the reasoning behind each decision made, and how it improves upon the previous solution. Also, could you show how these optimizations impact the time and space complexity of our solution?

Code Explanation and Design Decisions

  1. Identify the initial parameters and explain their significance in the context of the problem statement or the solution domain.

  2. Discuss the primary loop or iteration over the input data. What does each iteration represent in terms of the problem you’re trying to solve? How does the iteration advance or contribute to the solution?

  3. If there are conditions or branches within the loop, what do these conditions signify? Explain the logical reasoning behind the branching in the context of the problem’s constraints or requirements.

  4. If there are updates or modifications to parameters within the loop, clarify why these changes are necessary. How do these modifications reflect changes in the state of the solution or the constraints of the problem?

  5. Describe any invariant that’s maintained throughout the code, and explain how it helps meet the problem’s constraints or objectives.

  6. Discuss the significance of the final output in relation to the problem statement or solution domain. What does it represent and how does it satisfy the problem’s requirements?

Remember, the focus here is not to explain what the code does on a syntactic level, but to communicate the intent and rationale behind the code in the context of the problem being solved.

Coding Constructs

Consider the code for the solution of this problem.

  1. What are the high-level problem-solving strategies or techniques being used by this code?

  2. If you had to explain the purpose of this code to a non-programmer, what would you say?

  3. Can you identify the logical elements or constructs used in this code, independent of any programming language?

  4. Could you describe the algorithmic approach used by this code in plain English?

  5. What are the key steps or operations this code is performing on the input data, and why?

  6. Can you identify the algorithmic patterns or strategies used by this code, irrespective of the specific programming language syntax?

Language Agnostic Coding Drills

Your mission is to deconstruct this code into the smallest possible learning units, each corresponding to a separate coding concept. Consider these concepts as unique coding drills that can be individually implemented and later assembled into the final solution.

  1. Dissect the code and identify each distinct concept it contains. Remember, this process should be language-agnostic and generally applicable to most modern programming languages.

  2. Once you’ve identified these coding concepts or drills, list them out in order of increasing difficulty. Provide a brief description of each concept and why it is classified at its particular difficulty level.

  3. Next, describe the problem-solving approach that would lead from the problem statement to the final solution. Think about how each of these coding drills contributes to the overall solution. Elucidate the step-by-step process involved in using these drills to solve the problem. Please refrain from writing any actual code; we’re focusing on understanding the process and strategy.

Targeted Drills in Python

Now that you’ve identified and ordered the coding concepts from a complex software code in the previous exercise, let’s focus on creating Python-based coding drills for each of those concepts.

  1. Begin by writing a separate piece of Python code that encapsulates each identified concept. These individual drills should illustrate how to implement each concept in Python. Please ensure that these are suitable even for those with a basic understanding of Python.

  2. In addition to the general concepts, identify and write coding drills for any problem-specific concepts that might be needed to create a solution. Describe why these drills are essential for our problem.

  3. Once all drills have been coded, describe how these pieces can be integrated together in the right order to solve the initial problem. Each drill should contribute to building up to the final solution.

Remember, the goal is to not only to write these drills but also to ensure that they can be cohesively assembled into one comprehensive solution.


Similar Problems

Can you suggest 10 problems from LeetCode that require similar problem-solving strategies or use similar underlying concepts as the problem we’ve just solved? These problems can be from any domain or topic, but they should involve similar steps or techniques in the solution process. Also, please briefly explain why you consider each of these problems to be related to our original problem.