Delete and Earn

This problem can be solved using dynamic programming. The idea is to first count the frequency of each number in nums, and then use dynamic programming to calculate the maximum points that can be earned. Here’s a step-by-step guide to the solution:

  1. Count Frequencies: Create an array points of size max(nums) + 1, and for each num in nums, add its value to points[num]. This will give us the total points that can be earned by deleting each number.

  2. Dynamic Programming: Initialize a DP array dp of the same length as points. dp[i] will store the maximum points that can be earned by considering numbers up to i. Use the following recurrence relation:

    • dp[i] = max(dp[i-1], dp[i-2] + points[i]) for i >= 2
    • dp[0] = points[0] and dp[1] = max(points[0], points[1]) for the base case.
  3. Result: The value at dp[-1] will be the maximum number of points you can earn.

Here’s the code:

class Solution:
    def deleteAndEarn(self, nums: List[int]) -> int:
        # Step 1: Count frequencies and calculate points
        max_num = max(nums)
        points = [0] * (max_num + 1)
        for num in nums:
            points[num] += num

        # Step 2: Initialize DP array and fill it using recurrence relation
        dp = [0] * len(points)
        dp[0] = points[0]
        dp[1] = max(points[0], points[1])
        for i in range(2, len(points)):
            dp[i] = max(dp[i-1], dp[i-2] + points[i])

        # Step 3: Return the result
        return dp[-1]


  • In Step 1, we calculate the total points that can be earned by deleting each number.
  • In Step 2, we use dynamic programming to compute the maximum points for each prefix of points, taking into consideration that deleting a number i means we cannot delete numbers i-1 and i+1.
  • The final result will be in dp[-1], which gives the maximum points considering all numbers.

This solution has a time complexity of (O(N + M)), where (N) is the length of nums and (M) is the maximum number in nums.

Identifying Problem Isomorphism

“Delete and Earn” is a special case of the “House Robber” problem. It has a unique condition where when you pick a number from the array to delete (and earn its value), you have to delete all instances of that number plus all instances of the number minus one and plus one.

The “House Robber” and its variants form an approximate isomorphism with “Delete and Earn”.

  1. “House Robber”: This problem is simpler than “Delete and Earn”. It involves choosing non-adjacent houses to rob to maximize the total robbed amount, which can be seen as a simpler version of “Delete and Earn” without the condition to remove all instances of the selected number and its adjacent numbers.

  2. “Delete and Earn”: It shares the same concept of choosing elements to maximize the sum, but you can’t choose the adjacent elements once you’ve chosen one.

  3. “House Robber II”: It is a more complex version of “House Robber”, where the houses are arranged in a circle. Therefore, it is slightly more complex than “Delete and Earn”.

  4. “House Robber III”: It is the most complex problem among the listed ones, where houses are arranged in a binary tree layout.

The order of complexity, from simple to more complex:

  • House Robber
  • Delete and Earn
  • House Robber II
  • House Robber III

The shared concept among these problems is choosing elements that optimize the sum, while adhering to specific restrictions on the selection of adjacent elements. They are not identical but share the same basic structure, making them approximate isomorphisms of each other.

10 Prerequisite LeetCode Problems

This involves dynamic programming techniques and array manipulation. In this problem, you need to maximize your points by deleting elements in such a way that when you delete a number, you also delete all occurrences of the number plus and minus one.

Here are ten simpler problems to help you prepare:

  1. 53. Maximum Subarray: This is a classic dynamic programming problem, where you’re tasked with finding the contiguous subarray within an array that has the largest sum.

  2. 70. Climbing Stairs: This problem can help you get a basic understanding of how dynamic programming is used to solve problems with overlapping subproblems.

  3. 198. House Robber: This problem is about finding the maximum amount of money you can rob from houses located in a line, where robbing two adjacent houses triggers an alarm. This problem has a similar structure to “Delete and Earn”.

  4. 121. Best Time to Buy and Sell Stock: Here you are asked to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

  5. 322. Coin Change: This problem is about finding the fewest number of coins needed to make up a given amount, which can help you understand how to solve optimization problems with dynamic programming.

  6. 300. Longest Increasing Subsequence: This problem asks you to find the length of the longest increasing subsequence in an unsorted array of integers, which can help you understand how to maintain and update the state in a dynamic programming solution.

  7. 746. Min Cost Climbing Stairs: In this problem, you are given an array cost where cost[i] is the cost of ith step, and you can either start from the step with index 0 or the step with index 1. Your task is to find the minimum cost to reach the top of the floor.

  8. 509. Fibonacci Number: This is a basic dynamic programming problem that can help you understand how to build up a solution using previously computed results.

  9. 413. Arithmetic Slices: In this problem, you are asked to find the total number of continuous subarrays in a given array that form an arithmetic progression.

  10. 646. Maximum Length of Pair Chain: This problem requires you to find the longest chain you can make with pairs given in an array where you can use pairs in any order but you cannot use the same pair twice.

Clarification Questions

What are the clarification questions we can ask about this problem?

Problem Analysis and Key Insights

What are the key insights from analyzing the problem statement?

Problem Boundary

What is the scope of this problem?

How to establish the boundary of this problem?

Problem Classification

Problem Statement:You are given an integer array nums. You want to maximize the number of points you get by performing the following operation any number of times:

Pick any nums[i] and delete it to earn nums[i] points. Afterwards, you must delete every element equal to nums[i] - 1 and every element equal to nums[i] + 1. Return the maximum number of points you can earn by applying the above operation some number of times.

Example 1:

Input: nums = [3,4,2] Output: 6 Explanation: You can perform the following operations:

  • Delete 4 to earn 4 points. Consequently, 3 is also deleted. nums = [2].
  • Delete 2 to earn 2 points. nums = []. You earn a total of 6 points.

Example 2:

Input: nums = [2,2,3,3,3,4] Output: 9 Explanation: You can perform the following operations:

  • Delete a 3 to earn 3 points. All 2’s and 4’s are also deleted. nums = [3,3].
  • Delete a 3 again to earn 3 points. nums = [3].
  • Delete a 3 once more to earn 3 points. nums = []. You earn a total of 9 points.


1 <= nums.length <= 2 * 104 1 <= nums[i] <= 104

Analyze the provided problem statement. Categorize it based on its domain, ignoring ‘How’ it might be solved. Identify and list out the ‘What’ components. Based on these, further classify the problem. Explain your categorizations.

Identifying Problem Isomorphism

Can you help me with finding the isomorphism for this problem?

Which problem does this problem map to the corresponding isomorphic problem on Leetcode ?

How did you identify that this problem is a variation of problem?

Distilling the Problem to Its Core Elements

Can you identify the fundamental concept or principle this problem is based upon? Please explain. What is the simplest way you would describe this problem to someone unfamiliar with the subject? What is the core problem we are trying to solve? Can we simplify the problem statement? Can you break down the problem into its key components? What is the minimal set of operations we need to perform to solve this problem?

Visual Model of the Problem

How to visualize the problem statement for this problem?

Problem Restatement

Could you start by paraphrasing the problem statement in your own words? Try to distill the problem into its essential elements and make sure to clarify the requirements and constraints. This exercise should aid in understanding the problem better and aligning our thought process before jumping into solving it.

Abstract Representation of the Problem

Could you help me formulate an abstract representation of this problem?

Given this problem, how can we describe it in an abstract way that emphasizes the structure and key elements, without the specific real-world details?


Are there any specialized terms, jargon, or technical concepts that are crucial to understanding this problem or solution? Could you define them and explain their role within the context of this problem?

Problem Simplification and Explanation

Could you please break down this problem into simpler terms? What are the key concepts involved and how do they interact? Can you also provide a metaphor or analogy to help me understand the problem better?


Given the problem statement and the constraints provided, identify specific characteristics or conditions that can be exploited to our advantage in finding an efficient solution. Look for patterns or specific numerical ranges that could be useful in manipulating or interpreting the data.

What are the key insights from analyzing the constraints?

Case Analysis

Could you please provide additional examples or test cases that cover a wider range of the input space, including edge and boundary conditions? In doing so, could you also analyze each example to highlight different aspects of the problem, key constraints and potential pitfalls, as well as the reasoning behind the expected output for each case? This should help in generating key insights about the problem and ensuring the solution is robust and handles all possible scenarios.

Provide names by categorizing these cases

What are the edge cases?

How to visualize these cases?

What are the key insights from analyzing the different cases?

Identification of Applicable Theoretical Concepts

Can you identify any mathematical or algorithmic concepts or properties that can be applied to simplify the problem or make it more manageable? Think about the nature of the operations or manipulations required by the problem statement. Are there existing theories, metrics, or methodologies in mathematics, computer science, or related fields that can be applied to calculate, measure, or perform these operations more effectively or efficiently?

Simple Explanation

Can you explain this problem in simple terms or like you would explain to a non-technical person? Imagine you’re explaining this problem to someone without a background in programming. How would you describe it? If you had to explain this problem to a child or someone who doesn’t know anything about coding, how would you do it? In layman’s terms, how would you explain the concept of this problem? Could you provide a metaphor or everyday example to explain the idea of this problem?

Problem Breakdown and Solution Methodology

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Inference of Problem-Solving Approach from the Problem Statement

Can you identify the key terms or concepts in this problem and explain how they inform your approach to solving it? Please list each keyword and how it guides you towards using a specific strategy or method. How can I recognize these properties by drawing tables or diagrams?

How did you infer from the problem statement that this problem can be solved using ?

Simple Explanation of the Proof

I’m having trouble understanding the proof of this algorithm. Could you explain it in a way that’s easy to understand?

Stepwise Refinement

  1. Could you please provide a stepwise refinement of our approach to solving this problem?

  2. How can we take the high-level solution approach and distill it into more granular, actionable steps?

  3. Could you identify any parts of the problem that can be solved independently?

  4. Are there any repeatable patterns within our solution?

Solution Approach and Analysis

Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.

Identify Invariant

What is the invariant in this problem?

Identify Loop Invariant

What is the loop invariant in this problem?

Thought Process

Can you explain the basic thought process and steps involved in solving this type of problem?

Explain the thought process by thinking step by step to solve this problem from the problem statement and code the final solution. Write code in Python3. What are the cues in the problem statement? What direction does it suggest in the approach to the problem? Generate insights about the problem statement.

Establishing Preconditions and Postconditions

  1. Parameters:

    • What are the inputs to the method?
    • What types are these parameters?
    • What do these parameters represent in the context of the problem?
  2. Preconditions:

    • Before this method is called, what must be true about the state of the program or the values of the parameters?
    • Are there any constraints on the input parameters?
    • Is there a specific state that the program or some part of it must be in?
  3. Method Functionality:

    • What is this method expected to do?
    • How does it interact with the inputs and the current state of the program?
  4. Postconditions:

    • After the method has been called and has returned, what is now true about the state of the program or the values of the parameters?
    • What does the return value represent or indicate?
    • What side effects, if any, does the method have?
  5. Error Handling:

    • How does the method respond if the preconditions are not met?
    • Does it throw an exception, return a special value, or do something else?

Problem Decomposition

  1. Problem Understanding:

    • Can you explain the problem in your own words? What are the key components and requirements?
  2. Initial Breakdown:

    • Start by identifying the major parts or stages of the problem. How can you break the problem into several broad subproblems?
  3. Subproblem Refinement:

    • For each subproblem identified, ask yourself if it can be further broken down. What are the smaller tasks that need to be done to solve each subproblem?
  4. Task Identification:

    • Within these smaller tasks, are there any that are repeated or very similar? Could these be generalized into a single, reusable task?
  5. Task Abstraction:

    • For each task you’ve identified, is it abstracted enough to be clear and reusable, but still makes sense in the context of the problem?
  6. Method Naming:

    • Can you give each task a simple, descriptive name that makes its purpose clear?
  7. Subproblem Interactions:

    • How do these subproblems or tasks interact with each other? In what order do they need to be performed? Are there any dependencies?

From Brute Force to Optimal Solution

Could you please begin by illustrating a brute force solution for this problem? After detailing and discussing the inefficiencies of the brute force approach, could you then guide us through the process of optimizing this solution? Please explain each step towards optimization, discussing the reasoning behind each decision made, and how it improves upon the previous solution. Also, could you show how these optimizations impact the time and space complexity of our solution?

Code Explanation and Design Decisions

  1. Identify the initial parameters and explain their significance in the context of the problem statement or the solution domain.

  2. Discuss the primary loop or iteration over the input data. What does each iteration represent in terms of the problem you’re trying to solve? How does the iteration advance or contribute to the solution?

  3. If there are conditions or branches within the loop, what do these conditions signify? Explain the logical reasoning behind the branching in the context of the problem’s constraints or requirements.

  4. If there are updates or modifications to parameters within the loop, clarify why these changes are necessary. How do these modifications reflect changes in the state of the solution or the constraints of the problem?

  5. Describe any invariant that’s maintained throughout the code, and explain how it helps meet the problem’s constraints or objectives.

  6. Discuss the significance of the final output in relation to the problem statement or solution domain. What does it represent and how does it satisfy the problem’s requirements?

Remember, the focus here is not to explain what the code does on a syntactic level, but to communicate the intent and rationale behind the code in the context of the problem being solved.

Coding Constructs

Consider the following piece of complex software code.

  1. What are the high-level problem-solving strategies or techniques being used by this code?

  2. If you had to explain the purpose of this code to a non-programmer, what would you say?

  3. Can you identify the logical elements or constructs used in this code, independent of any programming language?

  4. Could you describe the algorithmic approach used by this code in plain English?

  5. What are the key steps or operations this code is performing on the input data, and why?

  6. Can you identify the algorithmic patterns or strategies used by this code, irrespective of the specific programming language syntax?

Language Agnostic Coding Drills

Your mission is to deconstruct this code into the smallest possible learning units, each corresponding to a separate coding concept. Consider these concepts as unique coding drills that can be individually implemented and later assembled into the final solution.

  1. Dissect the code and identify each distinct concept it contains. Remember, this process should be language-agnostic and generally applicable to most modern programming languages.

  2. Once you’ve identified these coding concepts or drills, list them out in order of increasing difficulty. Provide a brief description of each concept and why it is classified at its particular difficulty level.

  3. Next, describe the problem-solving approach that would lead from the problem statement to the final solution. Think about how each of these coding drills contributes to the overall solution. Elucidate the step-by-step process involved in using these drills to solve the problem. Please refrain from writing any actual code; we’re focusing on understanding the process and strategy.

Targeted Drills in Python

Now that you’ve identified and ordered the coding concepts from a complex software code in the previous exercise, let’s focus on creating Python-based coding drills for each of those concepts.

  1. Begin by writing a separate piece of Python code that encapsulates each identified concept. These individual drills should illustrate how to implement each concept in Python. Please ensure that these are suitable even for those with a basic understanding of Python.

  2. In addition to the general concepts, identify and write coding drills for any problem-specific concepts that might be needed to create a solution. Describe why these drills are essential for our problem.

  3. Once all drills have been coded, describe how these pieces can be integrated together in the right order to solve the initial problem. Each drill should contribute to building up to the final solution.

Remember, the goal is to not only to write these drills but also to ensure that they can be cohesively assembled into one comprehensive solution.


Similar Problems

Can you suggest 10 problems from LeetCode that require similar problem-solving strategies or use similar underlying concepts as the problem we’ve just solved? These problems can be from any domain or topic, but they should involve similar steps or techniques in the solution process. Also, please briefly explain why you consider each of these problems to be related to our original problem.