Add Two Numbers II
The problem involves adding two numbers represented by linked lists, where the most significant digit comes first.
One way to do this without reversing the input lists is to use a stack to keep track of the digits. By using two stacks, we can push the digits of both linked lists onto the stacks, then pop the digits off to add them together. This will effectively reverse the order of the digits without modifying the input lists.
 Push Digits into Stacks: Traverse both linked lists and push the values of each node onto two separate stacks.
 Add Digits from the Rightmost: Pop values from both stacks and add them together, keeping track of the carry.
 Build the Result Linked List: Create a new linked list with the sum, adding each digit as a new node at the beginning of the result linked list.
 Handle the Remaining Carry: If there’s a remaining carry after finishing the addition, add it as a new node at the beginning of the result linked list.
Here’s the code:


This code efficiently adds the two numbers without reversing the input lists, and it runs in O(n) time complexity, where n is the maximum length of the two linked lists.
Identifying Problem Isomorphism
In “Add Two Numbers II”, you have two numbers represented by linked lists, and you are asked to return a linked list that is the sum of these two numbers.
A simpler problem is “Reverse Linked List”. In this problem, you’re given a singly linked list and you have to reverse the order of its nodes. It’s a fundamental problem when dealing with linked lists, and you must master this skill before you tackle more complex problems like “Add Two Numbers II”, where you’ll need to reverse the linked list as part of your solution.
A problem that is approximately the same difficulty is “Add Two Numbers”. This problem also involves adding two numbers represented by linked lists, but the digits are stored in reverse order, which simplifies the addition process.
A more complex problem is “Multiply Strings”. In this problem, you’re given two nonnegative integers represented as strings and you need to return their product also as a string. It’s more complex as it requires more intricate string manipulation and the implementation of a multiplication algorithm, rather than simply addition.
Arranging these problems from simple to complex:
 “Reverse Linked List”  Reverse the nodes of a linked list.
 “Add Two Numbers”  Add two numbers represented by linked lists (digits in reverse order).
 “Add Two Numbers II”  Add two numbers represented by linked lists (digits in correct order).
 “Multiply Strings”  Multiply two numbers represented as strings.
10 Prerequisite LeetCode Problems
“Add Two Numbers II” involves adding numbers represented as linked lists. Here are ten simpler problems to prepare for it:
2. Add Two Numbers: This is a simpler version of the problem where the numbers are represented in reverse order in the linked lists.
206. Reverse Linked List: This problem is about reversing a linked list, which is a useful operation in many linked list problems, including “Add Two Numbers II”.
21. Merge Two Sorted Lists: This problem involves working with two linked lists, similar to the main problem.
445. Add Two Numbers II: This problem is almost identical to “Add Two Numbers II”, but requires the numbers to be added without reversing the linked lists.
160. Intersection of Two Linked Lists: This problem is about finding the intersection point of two linked lists, and can help you understand how to traverse two linked lists simultaneously.
234. Palindrome Linked List: This problem requires you to find if a linked list is a palindrome. It can help you understand how to traverse and manipulate linked lists.
141. Linked List Cycle: This problem requires you to detect a cycle in a linked list. It can help you understand how to deal with more complex linked list structures.
237. Delete Node in a Linked List: This problem is about deleting a node in a linked list, which can help you understand how to modify linked lists.
876. Middle of the Linked List: This problem is about finding the middle of a linked list, which can help you understand how to traverse linked lists.
83. Remove Duplicates from Sorted List: This problem is about removing duplicates from a sorted linked list, which can help you understand how to manipulate linked lists.
Clarification Questions
What are the clarification questions we can ask about this problem?
Identifying Problem Isomorphism
Can you help me with finding the isomorphism for this problem?
Which problem does this problem map to the corresponding isomorphic problem on Leetcode ?
Problem Analysis and Key Insights
What are the key insights from analyzing the problem statement?
Problem Boundary
What is the scope of this problem?
How to establish the boundary of this problem?
Problem Classification
Problem Statement:You are given two nonempty linked lists representing two nonnegative integers. The most significant digit comes first and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
Example 1:
Input: l1 = [7,2,4,3], l2 = [5,6,4] Output: [7,8,0,7]
Example 2:
Input: l1 = [2,4,3], l2 = [5,6,4] Output: [8,0,7]
Example 3:
Input: l1 = [0], l2 = [0] Output: [0]
Constraints:
The number of nodes in each linked list is in the range [1, 100]. 0 <= Node.val <= 9 It is guaranteed that the list represents a number that does not have leading zeros.
Follow up: Could you solve it without reversing the input lists?
Analyze the provided problem statement. Categorize it based on its domain, ignoring ‘How’ it might be solved. Identify and list out the ‘What’ components. Based on these, further classify the problem. Explain your categorizations.
Distilling the Problem to Its Core Elements
Can you identify the fundamental concept or principle this problem is based upon? Please explain. What is the simplest way you would describe this problem to someone unfamiliar with the subject? What is the core problem we are trying to solve? Can we simplify the problem statement? Can you break down the problem into its key components? What is the minimal set of operations we need to perform to solve this problem?
Visual Model of the Problem
How to visualize the problem statement for this problem?
Problem Restatement
Could you start by paraphrasing the problem statement in your own words? Try to distill the problem into its essential elements and make sure to clarify the requirements and constraints. This exercise should aid in understanding the problem better and aligning our thought process before jumping into solving it.
Abstract Representation of the Problem
Could you help me formulate an abstract representation of this problem?
Given this problem, how can we describe it in an abstract way that emphasizes the structure and key elements, without the specific realworld details?
Terminology
Are there any specialized terms, jargon, or technical concepts that are crucial to understanding this problem or solution? Could you define them and explain their role within the context of this problem?
Problem Simplification and Explanation
Could you please break down this problem into simpler terms? What are the key concepts involved and how do they interact? Can you also provide a metaphor or analogy to help me understand the problem better?
Constraints
Given the problem statement and the constraints provided, identify specific characteristics or conditions that can be exploited to our advantage in finding an efficient solution. Look for patterns or specific numerical ranges that could be useful in manipulating or interpreting the data.
What are the key insights from analyzing the constraints?
Case Analysis
Could you please provide additional examples or test cases that cover a wider range of the input space, including edge and boundary conditions? In doing so, could you also analyze each example to highlight different aspects of the problem, key constraints and potential pitfalls, as well as the reasoning behind the expected output for each case? This should help in generating key insights about the problem and ensuring the solution is robust and handles all possible scenarios.
Provide names by categorizing these cases
What are the edge cases?
How to visualize these cases?
What are the key insights from analyzing the different cases?
Identification of Applicable Theoretical Concepts
Can you identify any mathematical or algorithmic concepts or properties that can be applied to simplify the problem or make it more manageable? Think about the nature of the operations or manipulations required by the problem statement. Are there existing theories, metrics, or methodologies in mathematics, computer science, or related fields that can be applied to calculate, measure, or perform these operations more effectively or efficiently?
Simple Explanation
Can you explain this problem in simple terms or like you would explain to a nontechnical person? Imagine you’re explaining this problem to someone without a background in programming. How would you describe it? If you had to explain this problem to a child or someone who doesn’t know anything about coding, how would you do it? In layman’s terms, how would you explain the concept of this problem? Could you provide a metaphor or everyday example to explain the idea of this problem?
Problem Breakdown and Solution Methodology
Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.
Inference of ProblemSolving Approach from the Problem Statement
Can you identify the key terms or concepts in this problem and explain how they inform your approach to solving it? Please list each keyword and how it guides you towards using a specific strategy or method. How can I recognize these properties by drawing tables or diagrams?
How did you infer from the problem statement that this problem can be solved using ?
Simple Explanation of the Proof
I’m having trouble understanding the proof of this algorithm. Could you explain it in a way that’s easy to understand?
Stepwise Refinement
Could you please provide a stepwise refinement of our approach to solving this problem?
How can we take the highlevel solution approach and distill it into more granular, actionable steps?
Could you identify any parts of the problem that can be solved independently?
Are there any repeatable patterns within our solution?
Solution Approach and Analysis
Given the problem statement, can you explain in detail how you would approach solving it? Please break down the process into smaller steps, illustrating how each step contributes to the overall solution. If applicable, consider using metaphors, analogies, or visual representations to make your explanation more intuitive. After explaining the process, can you also discuss how specific operations or changes in the problem’s parameters would affect the solution? Lastly, demonstrate the workings of your approach using one or more example cases.
Identify Invariant
What is the invariant in this problem?
Identify Loop Invariant
What is the loop invariant in this problem?
Thought Process
Can you explain the basic thought process and steps involved in solving this type of problem?
Explain the thought process by thinking step by step to solve this problem from the problem statement and code the final solution. Write code in Python3. What are the cues in the problem statement? What direction does it suggest in the approach to the problem? Generate insights about the problem statement.
Establishing Preconditions and Postconditions
Parameters:
 What are the inputs to the method?
 What types are these parameters?
 What do these parameters represent in the context of the problem?
Preconditions:
 Before this method is called, what must be true about the state of the program or the values of the parameters?
 Are there any constraints on the input parameters?
 Is there a specific state that the program or some part of it must be in?
Method Functionality:
 What is this method expected to do?
 How does it interact with the inputs and the current state of the program?
Postconditions:
 After the method has been called and has returned, what is now true about the state of the program or the values of the parameters?
 What does the return value represent or indicate?
 What side effects, if any, does the method have?
Error Handling:
 How does the method respond if the preconditions are not met?
 Does it throw an exception, return a special value, or do something else?
Problem Decomposition
Problem Understanding:
 Can you explain the problem in your own words? What are the key components and requirements?
Initial Breakdown:
 Start by identifying the major parts or stages of the problem. How can you break the problem into several broad subproblems?
Subproblem Refinement:
 For each subproblem identified, ask yourself if it can be further broken down. What are the smaller tasks that need to be done to solve each subproblem?
Task Identification:
 Within these smaller tasks, are there any that are repeated or very similar? Could these be generalized into a single, reusable task?
Task Abstraction:
 For each task you’ve identified, is it abstracted enough to be clear and reusable, but still makes sense in the context of the problem?
Method Naming:
 Can you give each task a simple, descriptive name that makes its purpose clear?
Subproblem Interactions:
 How do these subproblems or tasks interact with each other? In what order do they need to be performed? Are there any dependencies?
From Brute Force to Optimal Solution
Could you please begin by illustrating a brute force solution for this problem? After detailing and discussing the inefficiencies of the brute force approach, could you then guide us through the process of optimizing this solution? Please explain each step towards optimization, discussing the reasoning behind each decision made, and how it improves upon the previous solution. Also, could you show how these optimizations impact the time and space complexity of our solution?
Code Explanation and Design Decisions
Identify the initial parameters and explain their significance in the context of the problem statement or the solution domain.
Discuss the primary loop or iteration over the input data. What does each iteration represent in terms of the problem you’re trying to solve? How does the iteration advance or contribute to the solution?
If there are conditions or branches within the loop, what do these conditions signify? Explain the logical reasoning behind the branching in the context of the problem’s constraints or requirements.
If there are updates or modifications to parameters within the loop, clarify why these changes are necessary. How do these modifications reflect changes in the state of the solution or the constraints of the problem?
Describe any invariant that’s maintained throughout the code, and explain how it helps meet the problem’s constraints or objectives.
Discuss the significance of the final output in relation to the problem statement or solution domain. What does it represent and how does it satisfy the problem’s requirements?
Remember, the focus here is not to explain what the code does on a syntactic level, but to communicate the intent and rationale behind the code in the context of the problem being solved.
Coding Constructs
Consider the following piece of complex software code.
What are the highlevel problemsolving strategies or techniques being used by this code?
If you had to explain the purpose of this code to a nonprogrammer, what would you say?
Can you identify the logical elements or constructs used in this code, independent of any programming language?
Could you describe the algorithmic approach used by this code in plain English?
What are the key steps or operations this code is performing on the input data, and why?
Can you identify the algorithmic patterns or strategies used by this code, irrespective of the specific programming language syntax?
Language Agnostic Coding Drills
Your mission is to deconstruct this code into the smallest possible learning units, each corresponding to a separate coding concept. Consider these concepts as unique coding drills that can be individually implemented and later assembled into the final solution.
Dissect the code and identify each distinct concept it contains. Remember, this process should be languageagnostic and generally applicable to most modern programming languages.
Once you’ve identified these coding concepts or drills, list them out in order of increasing difficulty. Provide a brief description of each concept and why it is classified at its particular difficulty level.
Next, describe the problemsolving approach that would lead from the problem statement to the final solution. Think about how each of these coding drills contributes to the overall solution. Elucidate the stepbystep process involved in using these drills to solve the problem. Please refrain from writing any actual code; we’re focusing on understanding the process and strategy.
Targeted Drills in Python
Now that you’ve identified and ordered the coding concepts from a complex software code in the previous exercise, let’s focus on creating Pythonbased coding drills for each of those concepts.
Begin by writing a separate piece of Python code that encapsulates each identified concept. These individual drills should illustrate how to implement each concept in Python. Please ensure that these are suitable even for those with a basic understanding of Python.
In addition to the general concepts, identify and write coding drills for any problemspecific concepts that might be needed to create a solution. Describe why these drills are essential for our problem.
Once all drills have been coded, describe how these pieces can be integrated together in the right order to solve the initial problem. Each drill should contribute to building up to the final solution.
Remember, the goal is to not only to write these drills but also to ensure that they can be cohesively assembled into one comprehensive solution.